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NEW HIGHER-ORDER BOUNDARY-LAYER EQUATIONS
FOR LAMINAR AND TURBULENT FLOW PAST AXISYMMETRIC BODIES
C. KLEINSTREUER*, A. EGHLIMA** AND J.E. FLAHERTY?

Rensselaer Polytechnic Institute
Troy, NY 12181

Abstract. New sets of boundary-layer equations accounting for flow field
non-uniformities such as curvature effects, normal stress and pressure variations
as well as separation, are derived. The boundary-layer flow domain is subdivided
into (1) a parabolic region where the fluid flow is approximately parallel to the
submerged body, i.e. v<<u and (2) an elliptic region which includes the line of
separation where significant interactions between the boundary-layer and the outer
potential flow occur, i.e. v = u. Closure for the turbulent flow equations has to be
obtained with submodels for the Reynolds stresses which reflect the effects of
boundary-layer thickening as well as separation. The accuracy of theAparabo1ic
equations was compared with Van Dyke's higher-order boundary-layer equations for
laminar flow past a body with longitudinal curvature. The rq;u]ts demonstrate

that the new modeling equations make a measurable difference as expected from
observations made by Bradshaw and others.

1. Introduction. An accurate but also computationally efficient
description of internal or external, laminar and turbulent flow fields is

important for the optimal design of a variety of mechanical systems. For

H

example, simulation of the proposed boundary-layer equations can aid in
improving the design of bent diffusors and submerged bodies in terms oF
reduced pressure loss and total drag reduction respectively. Furthermore,
propeller performance of marine crafts could be enhanced with a more

accurate prediction of the velocity field in the near-wake region. u

At the high Reynolds numbers of interest, the analysis involves the

usual difficulties encountered with turbulent boundary layers in a pressure
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gradient now accentuated by the boundary layer thickness (relative to the
transverse and/or longitudinal body radius) and eventually the effects of
flow separation. Van Dyke (1962, 1969) has shown, that transverse curvature.
makes a contribution to differential and integral flow parameters that is
additive to that of longitudinal curvature and of the same relative order.

Meroney and Bradshaw (1975) have measured turbulent boundary layer growth

in a prolonged bend and show that a small (one percent) change in the curva-
ture of a convex surface produces a relatively large (ten percent) change

in the integral properties of the flow field, such as total drag. Further
measurements of curvature effects on laminar and turbulent boundary-layer
flow parameters were published by Huang et al. (1980), Gillis and Johnson
(1980), Smith et.al..(1979), Patel and Lee (1978), Ramaprianiénd Shivaprasd

(1978), and Patel (1974). Different investigators (2.g. Rastogi and Whitelaw
(1971), Bradshaw (1973, 1975}, Patel and Lee (1978}, Granville (1978),

Cebeci et al. (1978), Huang et al. (1979), Cebeci (1979), and Patel and

Choi (1980)) have used or described different methods to solve thick bound-
ary .layer problems for special situations by taking into account some of

the ﬁon~uniformities, such as longitudinal curvature or transverse curvature
effects, but not all of them as discussed earlier. On the other hand we

will show in subsequent sections that the equation usually employed for
calculating the longitudinal curvature effect (Van Dyke (1962)) is not
complete. OQur derivations (Sections 3 & 5) indicate that additional terms
of the same order of magnitude as Van Dyke's second order terms are necessary
for representing the influence of longitudinal curvature on the growth of
boundary layers. Authors (e.g. Cebeci (1971), Rastogi and Whitelaw (1971),
Cebeci et al. (1978, (1979)) who employed a turbulent version of Van Dyke's

equation could not predict the curvature effects on integral properties of
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the flow field as measured by Meroney and Bradshaw (1975). Solutions of the
boundary layer equations employing prescribed variations of the pressure
gradient (Patel (1974)) failed near the poiﬁt of flow separation and con-
sequently a singular behavior in the boundary layer solution was postulated
(Goldstein (1948)). However, Williams (1977) used the results of various
researchers (e.g. Keller and Takami (1966), Son and Hanrétty (1969), Dennis
(1970), and Masliyah (1970)), who solved the Navier-Stokes equation for flows
that include the point of zero stress, to show that such a singular behavior
is not a physical property of the flow but it is a characteristic of the
solutions of the boundary layer equations.

We are presenting higher-order boundary-layer equations that simulate

incompressible laminar and turbulent flow fields more accurately than with

existing models.

2. System conceptualization and approach. Consider the steady two-

dimensional or axisymmetric flow of a Newtonian fluid past a stationary body.

Figure 1 schematically depicts the various flow developments including the

three major regions of interest at the tail of the submerged body where the
boundary layer is thick due to curvature effects. In region I the mean flow
streamlines remain nearly parallel to the solid surface regardless of the il

relative thickness of the boundary layer. In region II streamlines are not

parallel to the body surface and the velocity component u parallel to the
body surface is of the same order of magnitude as the velocity component v
normal to the body. The flow in this region is characterized by strong
interactions between the boundary layer and the outer inviscid flow in region

ITI. Basically two new sets of governing equations for thick turbulent
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boundary layer flows (regionl and II) are derived. Laminar flow fields with
; any type of curvature effect can be regarded as a special case of the first
complete set of modeling equations. .
| The approach for simulating a general external or internal flow system is
best illustrated with reference to Fig. 1. Starting ffbm the stagnation point,
a suitable computer code (e.g. Cebeci et al.(1978))is empfoyed until the boundary
layer becomes thick, i.e. %- << 1 is not valid any more. The intermediate results
are then relayed to the program of our new parabolic equations for region I which

are accurate as long as v << u which may include the point of separation. We

note that boundary layer thickening might occur for certain body geometries

at quite an early stage as demonstrated in Section 6 for.a laminar flow case

study. When reverse flow occurs and v = u, the new elliptic_modeling equa- '

tions of region II are activated. Interaction with the potential flow

(Cebeci et al. (1978)) is simulated with the local displacement thickness

using an iterative procedure. In order to preserve computational efficiency,
a continuous function is assumed for the pressure drop from the calculated
pressure at the separation point to the wake pressure behind the afterbody
which is apparently of the order of magnitude of the outer flow pressure.

The near-wake velocity field is then actually computed with Schlichting's solu-
tion for (circular) wakes behind a three-dimensional body (e.g. White (1974),
Riley and Metcalfe (1980)). More detailed investigations fo} wake flow are dis-

cussed by Wu (1972), Pope and Whitelaw (1976) and recently by Smith (1979).

3. Derivation of the governing equations for region I. The governing

equations for the generalized class of thick boundary layer developments are

written in terms of fluid mass and momentum fluxes (cf. Kleinstreuer (1982)):




o g

(3.1) 20 4+ gepy = 0

~

(3.2) TPy Ty y - Tor *of

where pv is the mass flux (i.e., fluid mass per unit area and per unit time),
pyv is the momentum flux and w=p§ + -Eb is the total stress tensor consisting
of the thermodynamic pressure as well as shear plus normal stresses.

We restrict our analysis to the steady two-dimensional or axisymmetric
flow of a Newtonian fluid around a submerged body and introduce the tangential
and normal (s, n) orthogonal coordinate system shown in Fig. 2. Under these

conditions, the equations of continuity and momentum may be written as:

) 3 -
(3.3) I (ur) + T (vrh) = 0
u du du , uvk 1 Oop 1 azu azu 1
—e— vV — = .= + 9y — — =
h 3s n h ph 9s h2 3s an2 th
(3.4) 3 ,r, du 9 du
[3s & 35 + 3z 00 3}
2 2 2
u ov v Ku l3p 1 3°v  3v 1
TEm v a2 RS S
. h ds on h p on h2 352 anz rh
(3.5)

3 ,r, dv 2 av
Y (F) s + 3 (hr) —3;]}

where the geometric parameters h = 1 + E— and K = % reflect longitudinal

curvature effects whereas r = ry+n cos® accommodates the transverse curvature

(cf. Figure 2).
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Figure 2,

Coordinate system and geometric parameters where
r=rg+*+ncosé, r=rg+ncos 6, %%—= - %-= - K,
or _ ar _ . drg _ .

3y = C0S B, == = (1 + Kn) sin 8, 45 = sin 8, and

h=1+Kn.




The system of equations (3.3-3.5) can be simplified for distinct parts of the

flow domain employing the relative order of magnitude analysis.

In region 1 of Fig. 2, the normal component of the velocity vector v i§
significantly smaller than the longitudinal component u. With this assumption,
we introduce dimensionless variables that are of the order of unity in the

boundary layer (cf. Van Dyke {1969)) as

U= u/U , ¥ = Re™ /U
(3.6) s =s/L , n = Re™ n/L
Re = UL/v , p=p/o U2

Non-dimensionalization of the governing equations is achieved by inserting

the dimensionless variables (3.6) into first the continuity equation (3.3).

UL 3 rf= ., ~ o.-m UL Re™ 3 [~ .~ .
T 3 [(ro + 0l Re ™ cosB)u] + ——— Sﬁ'[(rO + n Re™™ cos8)

< ~m
(3.7) . L.Re
*(1 + KnRe™™v] = 0

L[ + 1 ReM 3 ([F Kn Re™ n Re” v

ag_[(ro + n Re " cos8)u] + Sﬁ'{[r°(1 + KnRe™) + n Re™™ cos8]v}
(3.8) _ -

* Re Zm g%-[(an cosa)v] = 0 .

This equation after restoring original variables and rearrangement will

reduce to

(3.9) ae )+ 2 tvied - 309+ ore M = g




Substituting (3.6) into equation (3.4) yields:

!i ﬁ _3_§_+_'~l_'q 3_U_ + .l_J_z_ ERe
L 1+ BiiRe™ 35 L ai L 1+ KnRe uv =
2 = 2~
-UT—‘:Jﬂ%g'Pv{—UZ— ~] 3~l21 +
+KnRe™" 9 L" 1+ kfRe™ 33
L a [ L(F,+ i ReMcos8)(1+ knRe ™) 38
] 3 ysllpe?m M 9

" (1+KnRe-™)? 37 L2

L~y R
('I+Kn Re~M) an .
Using the relation

] .
e = e + e+ T};:’(—e+0(€2); where € << 1

one can find for the previous equation

~ al - M o~~~ o .
i [1-KARe™+ 0(Re™M 147 2L 4 R3T Re™ [1-K7 Re™+ 0(Re2M)
ap ~—— . - 2 —— -
- 55‘ U‘K" Re™"+ 0(Re zm)J+-a~—‘z’ * Re™! [1-2Kn Re™ ™+ 0(Re™2™)] + Ra2m-1 32U
% an’
£ | pe-]
su Re 25
(3.11) + a3 [1- CTD cos 8 +2Kn JRe™ + O(Re 2“)]
* _a:': - ] ~_ -~ -m - g
23 [1-3KnRe +'0(Re Zm)] %g
3l ,_2m-1 A
+ — ____ -m - _
aﬁ.Re i - ;; cos 8 Re™" + O(Re Zm)]-*cos 8 Re~™

+ KRe™™ [1-KnRe™ + 0(Re™2™)]

3 = L{ry,+n Re~™ cosg)an




where - -
ar o ., ~ _ -m 2 cos O
-_— = L —+ nR
3 [ S as ]
3h _ 3 gem —L—”K,,S i
9S as

After some rearrangements, the equation of motion in s-direction can be

written as

=l
QW
wlcz
+
<
Q jo
:ul:t
+
l
’\
7(1
::u
[+ 3]
lmlcl
xi
L
w |oy
w!‘ct
LY
—d
)
=~
p=1]
o
)
1
3
S®

(3.12)

+ K) + 0(Re™V,Re™ ™1 pe=2m ...

+ (Re)Zm-‘l %u u + Re m-1 au ( cos 8
an” n To

3 )

Restoring the original variables in equation (3.12) will yield

(2.13) (2-hd) u—-+v

an

- 2
+ Kuy = —%(Z-hJ) %gw{%l% s 2 [(") + w7}

Substituting (3.6) into equation (3.5) yields

2 -m T 2 _ A 2 o o~ —
, y,_* _R~ Ua—..-+UTRe-mv§¥.--UT———————fuz = .02 B
| (1+k A Re™™) 35 an (1+Kfi Re™™) pL Re™™ @1
i
| (3.14) Re™ U L U 1 2% g
+y _ Vv . U 3V , U pam3V 3 (F
(Fkire ™) L7 35% & 12 gem aar ¢ 1T 3 Ly (@)
u 1 3v 3 y=r
+ A
Using again the relation 115 1-e + 0(e?) one obtains H
Re™™ (1-?5Re"m) Uy geMy Y 3V .l?u (1- knRe'm)
as ot
= -Re’™ —é—g + Re™™ 1 (1-2kn Re™™) a—.—vz- + Re™ ! 3,}'
(3.15) on 9s an”
¥ +n Re~M cos 6
4 g™ 12 p 2 (0O )1 ;
85 7 95 J4KpRe ™ |
) ] - - » i
+ Re™! g—:— [ = (cos @ Re™™ - %— cos 8 Re™™) + K Re™™ 4+ o(Re™M)]
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‘ unity in the boundary layer are introduced as:

After rearrangements and simplifications, we have

- KuzRe™ + Re™2M (u Ny v A1)

oS

[-SR1.%]
Sti<y

(3.16) - . - ) = i
S 3By el B2y g MY (€05 B 4§y 4 p(re™ T, ReTIM; -o1)
an an an = To

Restoring the original variables yields

]a Re-zm’ "’)

(3.17) Ku? =

O |~

_QR -
T o(Re

Hence, for region I, (3.9, 3.13 and 3.17) are the basic equations where the
flow indices i and j indicate the cases j=j=0 for flow past a flat plate and
i=1, j=0 for axisymmetric bodies with no longitudinal curvature and i=0,
j=1 for flow without transverse curvature. Finally, i = j = 1.when longitudinal
and transverse curvature effect exist. The exponent m is kndwn for turbulent
thin boundary layer flow with zero pressure gradient along a flat plate (m = %

see Schlichting, 1979, p. 638). Thus, terms of the order of Re'], Re'zm, etc.

are neglected.

Depending on the geometry of the submerged body it is possib]e'that the

boundary-layer thickness &, is not small (i.e. D~ 0(1)) but the mean flow
o} L

streamlines still remain nearly parallel to the surface so that the normal

component of the velocity v is still much smaller than the longitudinal

component u. In this case, dimensionless variables that are of the order of

= 2 M ~ _Re v
U‘U Y’ V U
T =3 5 =1
(3.18) s =T . n=r
= UL TP
Re = Y , P N




Inserting the dimensionless variables into the system (3.3-3.5), and following

the same procedure that was used previously, one rhtains

as on .
~al~l g "m“'aa “~~=_.?L§ -1

Restoring the original variables

2 (ur) +2 (vhr) = 0

(3.20) qu u __1lap -1
u5§+hv§5+uvK--Eas+0me ).

3V

3 Ku? = - %-g-%+ o(re™2", ge™™ 1)

For the turbulent flow analysis, time-averaged variables are denoted by

overbars and random fluctuations by primes, so that
(3.21) u=u+u ,v=v+v andp=p+p’

where Reynolds stresses generated by the non-axisymmetric velocity fluctuations

w' are neglected.

In addition, the following rules of operation for time-averaged variables

are required for reference




Equations (3.22 to 3.24) contain five unknowns, namely, G, v, p, u'v', (u'Z).

In order to gain closure it is therefore necessary to furnish some additional

relationships. .
Based on the objective of computational efficiency, and with the measured

data sets found in the open literature, we postulate an algebraic turbulence

or zero-equation model for the shear stresses reflecting curvature effects and

relate these expressions directly to the normal stresses. Among the algebraic

submodels, the mixing length hypothesis (MLH) has proven very useful and

realistic for a wide range of case studies, provided that good choices were

made for the mixing length distributions. However, the MLH cannot represent,

in general, recirculating flows, turbulence convection or diffusion and non-zero

effective viscosities or Prandtl numbers at the points of zero velocity grad}ents.

Two commonly employed transport equations for turbulent shear stresses are the

mixing length formula (Von Kdrmédn (1931))

. ,2|3ulau
(3.27a) -u'v' = 21ﬂ|3y 3y

and the eddy viscosity formula (Boussinesq (1877))

Tt = _a_u
(3.27b) -ulvt o= vy 3y

where v, = vt(zm) again.
Following the method used for thin turbulent boundary layer calculations,
a composite layer consisting of two regions is postuiated (e.g. Baker & Launder

(1974), Kwon & Pletcher (1979)). The distributions of %, @nd v, are then

described by two separate empirical expressions. The criterion to define
P p

the inner and outer region of the boundary layer is the continuity of the

eddy viscosity or the mixing length at the hypothetical "interface". The




a
.

shear stresses are a function of mean-time velocity and velocity gradient as
well as mixing lengths which in trun are dependent upon the radii of

curvatures, viz: . i

(3.28) u'vt = u'v’ [ve (2sRor0)s U, 00T

The turbulent flow analysis as well as predicted vs. measured results can be

found in Eghlima (1982) and will be published in a forthcoming paper.

4. The governing equations for region I1I. 1In region II which possibly

includes the point of separation, we can no longer assume that.v << u. Hence,_
the flow in this region is characterized by strong interactions between the
(detached) boundary layer and the outer potential flow. It is also conceiv-
able that the attached (parabolic) boundary Tayer regime may be influenced by
the (elliptic) reverse flow region after separation. Actual simulation results
of thick separating boundary layer flows, viscid-inviscid interactjonsAand
near-wake effects will be discussed in a future series of papers. In this
_section we summarize the governing equations for region II.

After the appropriate correction in equation (3.6), since now v = u,

and substitution into the system of equations (3.3 to 3.5) we obtain

L \ o i
(4.1) 35 (r )+ o Dv(rl-r (1-07))] + 0(Re™™) = 0

_ 2u au _ 13 3%u -2m
(4.2) uas+v3n+uvK—-~55§-+va—n;+0(Re )

1 2 -
(2.3) Uu=—+v—- Ky =- 3 -g-g-+v-‘;—z+0(Rezm)




! We note that transverse curvature effects only appear in the continuity

t l equation (4.1); whereas the approximated s- and n-momentum equations (4.2

| and 4.3) only explicitly contain the longitudinal curvature parameter in
one term. However, in contrast to the first-order boundary layer equations,

the Navier-Stokes equation in n-direction is almost fully preserved since

v = u. In addition, transverse curvature effects have to be coupled with
| the Reynolds stresses.
Again splitting the instantaneous variables into time-smoothed and

random components we can derive the steady turbulent flow equations for

region II as

3 i- ]
(4.4) 2erin+Zmy- )
|
- - 324 LT Y
G, gop . 13, e 1 i 2w+
s on pas 3!1
’ (4.5)

A

4+ sin B8(u'’) +-§a;- (u'v' M) + MK (u'v")]

- av -2 1 3p 9%v 1 (3 o
g+t Vg - Ku = --6-5§-+ v T, 5o 'V’ ) +
(4.6) ‘

+ (.M+21'°.) ™ (v 12 ) + (cos O) (v ) + K ro[(;_l—;) (w'2)1}

where M = rd - ro(]_hj) and K = (%)1/j .

The associated boundary conditions and the meaning of i and j are given

in Section 3.

l




5. Case study for laminar boundary-layer flow with longitudinal

curvature effect. To demonstrate the technical merit of the new governing

equations, a spinoff from equation (3.4), the special case of laminar bounda;y
layer flow with longitudinal curvature effects is analyzed. Van Dyke (1962), :
(969) developed a higher-order boundary layer equation which takes into

account the effect of longitudina1.curvature as

U, pd o, 2u -.12p j 3%y 2u
(5.1) uss+h Vﬁ+K“V"'pas+\’hJan2 + WK o

In contrast, our s-momentum equation which can be directly obtained from (3.13) for T,
reads-

3 - sy du T
| u ——a: +hlv ﬁ+ Kuv + [(1-hd) u 22 + (1-hJ) v—ag =
(5-2) 15 32 3 N o5y 92
=_13p j d%u U L roqipdy 13 _pdy 2%u
S3etvh an2+vKan+[(1h)p;g—-i-v(]?l)anz].

Hence, the proposed modeling equation (5.2) carries four additional terms
which are of the same (second) order of magnitude when compared with equation
(5.1). For h=1, which includes K=0, both equations reduce to Prandtl's
boundary layer equation.

Before both equations are numerically compared it is of intefest to trace

the derivation procedures leading to the noted discrepancy. The traditional

departure point for obtaining a higher-order approximation of laminar incom-

pressible flow along a curved surface is either the system of equations (7)

on page 119 in Goldstein (1948) or equations (22 and 23) on page 202 in
Rosenhead (1963). The two sets of equations are mathematically equivalent
but physical significance is lost vhen Goldstein's equation is multiplied by

H (original notation) to generate Rosenhead's equation. Indeed, Rosenhead's




equation can be obtained in multiplying equation (3.4) by h = 1 + %-and then
neglecting terms of the order of (%)2 and higher. During this procedure
certa.n terms of the order of (%-) could not be retained. This is best

illustrated by considering an equation of the functional form
(5.3a) %-+ Be + 0(e?) + ---- =10
where h =1+ ¢+ 0(e?) and € = -% ]

Equation(5.3a) is representativefor Goldstein's equation whereas Rosenhead's

equation would take on the form

(5.4a) A+ Bhe + 0(g?2) + --- =0

or

(5.4b) A+ Be+ O(e?)+ --- =0.

This last procedure, leading to Van Dyke's equation (5.1), indicates a short-
coming when compared with equation (5.3) now rewritten with hl = (1+e)'] =

1-e  + 0(e?)
(5.3b) ‘(T-E) A+ Be + 0(e?) + --- =0.

In equation (5.3b) which is representative of our equation (5.2), the term,
-¢ A, is preserved in the derivation procedure.

In Section 6, numerical results from a case study document the differ-

ences between equations (5.2) and (5.1).

6. Preparation of governing equations and numerical comparison. In

order to simplify the comparison of numerical case studies, equations (3.23)

and (3.24) are rewritten in a general form.

0

3

au 2u = p, 32 2 Y
(6.1) A] u Yy +A2 v =n +A3 uv A4 e + \)As an (Aaa )"’\)A

Qo)
o 3 § =

7




(6.2) Apu? = A2 4

8 on g 3n .

Now, Van Dyke's equation (5.1) is obtained by setting ' .
= = j = = - l = j = =
A] - ] ’ Az = h EY A3 K [ A4 p ’ A5 h £y A6 ] and A7 K .

Our s-momentum equation (5.2) requires

A

- 3 - - - A = -
1° 2-h", A2 1,A3=K, A4 = -(2-h)/p , Ag = Ag =1 and A7 =K.
A finite difference method developed by H.B. Keller and described by
Cebeci and Smith (1974) was selected after improvements were implemented as the

best candidate for our modeling equations (Eghlima (1982). In order to prepare

the governing equations, submodels and boundary conditions for the numerical

solution procedure, the following steps have to be accomplished: (1) trans-
formation of the modeling equations into a new coordinate system (modified
Mangler-Levy-Lee transformation), (2) transformation of the momentum equations.
and associated boundary conditions into a system of first-order partial differ-
ential equation, and (3) discretization of the modeling equations into finite
difference forms using centered-differenced quotients. Some salient aspects of

the first two steps are given below.

In order to remove the large variations of the boundary layer thickness

and to obtain the governing equations (3.22 to 3.24) in simple form, an appro-

priate coordinate transformation is implemented.

(6.3a) dg = Pe Wi Ug ds

where, in general, the turbulence viscosity wy = ue(] + em) and €n = em(E,n);

; (6..30) n = [pg ug/ V2T 1) an
r




In using the continuity equation (3.22), the stream function ¢ can be

defined as

1 1 )
(6.4a,b) u=—— X and Ve 555{1 ]

A dimensionless stream function f(£,n) is related to y(s,n) as:

(6.5) Ws.n) = V2L f(En) .

Now the partial-derivative operators g%— and g%{ can be calculated.
For example: :

.[(6.6a) u = uef' , where f = %%‘ )

(6.6b) V=, uy VL, /M[25 ( ). '] .‘

Substituting the transformed variables and their derivatives into equations
(3.23 and 3.24) - equation (3.22) is automatically satisfied - the momentum

equations in the (, n)- coordinate system read:

[Q] fll]l + Qz frer o+ Q3(f')2 + Q4 f£" + Q5 fF' + QG " =
(6.7)

07[() <ag>n3nn+o8f-gg ogf""f+0]0f'§§

)

(6.8) Oy £+ Qpp(F)2 = 0432 ¢

where the Q's are functions of geometric, fluid, and flow parameters. In
substituting ( %% )€ from equation (6.8) into (6.7), a single equation results.
To solve this third order, nonlinear partial differential equation with

Keller's Box Method, new dependent variables U(£,n) and V(£,n) are introduced

and a coupled system of first-order PDE's is generated:




X
-~

(6.9a) f!

]
[and
i

= u/ug

(6.9b) u

"
-

[Q, VI" + Q UV + Q ()2 +Qp FV + Q5 fU + Qg V =

(6.9¢) 3 3U af \ 3f

The system (6.9) constitutes the new set of higher-order boundary layer equations
for laminar and turbulent flows in region I.

The associated boundary conditions, formerly given as (3.25), can be written as:

(6.10a) f'(g,0), i.e. U(g,0) = 0 and " f(g,0) = 0.

In addition,

' 1
(6.10b) n - Ne f' > ﬁm
where
_ ro 2L, cos @ J2E 1/2
D(Ean) =K cos 6 [(] + roz peue n) - ]] .

For the case of flow past a flat plate, D(£,n) = 0 or f' = 1. The edge

boundary condition may be sensitive to the specification of n_. To reduce

this sensitivity, the expression (6.10b) is differentiated so that with

(6.]0C) n-+n , f'"=- D,(E,ﬂ)
°° [1+D(g,n)]?
where
2Ly V2E 2Lr cos 0O s -1/2
D,(E,n) = K ——1—==
1(6,n) = K Pelglg 1+ r02 Pele n)

In combining (6.10b and c¢), the outer boundary-layer condition reads

(6.10d) n-+n

o

f' +D,(g,n) £ =0

or vV + D,U2 = 0.




The coefficients of (6.9c) are defined as

Q2 an _ Q]1 an
i} Q]4—Q3-Q7-QE._€- ’ Q]S—QB-%QE;@—E’
| @ = () 0p=-(21) [Qg + Q] '
! 1 6 ‘Ly > 2 3¢ ‘n 8 9
_ Qg 3y on s’ (Lr)1
G-t ® "o o %°
! r7e, L Ar e
, 05 =1 SLE () o, - 2
5% ou, r! Q% %~ A bou.
A, Q A L. 3
4 Y8 I R s
; Q7""Kl':g ’ QB—EZQ(Y')
| Qg = - 2E Q , Qo=-2%06
! i = ]"i =
; | Q7 = Aq pe(ﬁ) ’ Qp = - A3V
. h.
i Pe , pr . 1 M, Jocipe s 1 M
RERC R (ro)1 " €nle  sine * g * K.

For the simulation of (5.1) and (5.2), G(s,n) = K wherery—+= and e =0, and
the appropriate parameters A; to A9 have to be inserted.

The boundary conditions for (5.1) and (5.2) are

U(g,n=10) = 0= f(g, n=0) and U(g,n-n )~ 1.

Following the procedure for implementing Keller's Box Method as outlined in
Cebeci and Smith (1974), equations (6.9a-c) are prograrmed and then solved
with an efficient, generalized equation solver developed by Varah (1976) and

implemented by Flaherty and Mathon (1980). The pressure gradient is obtained

from the solution of the inviscid flow regime (region III) for which the

code developed by Cebeci et al. (1978) was employed.




To demonstrate the effect of longitudinal curvature and to show the numerical
differences between equations (5.1) and (5.2), we selected an axisymmetric

body designed and documented by Huang et al. (1979). Figure 3 depicts schem-
atically one-half of the symmetric body which in our case is semi-infinite ‘
since rg - «. Of much higher resolution and physical interest is Fig. 4. It
shows the local’ % =Ké& vs. the chord length of the submerged body. The curve
peaks early due to a sharp decrease of the radius of longitudinal curvature and
then falls to zero (despite the growing boundary layer) when R > =. When the

flat middle section is over, %- increases again since R becomes finite and &

is quite thick (= 0.4 ft) by then. The threshold value for (%)o = 0.003

was suggested by Cebeci and Smith (1974) based on Bradshaw's measurements which,

however, were made for turbulent flows. For values %—> (-%)— curvature
[e

effects become significant.

Figure 5 demonstrates that our "additional second-order terms" have indeed a

significant effect, actually 10% at one point in this case study. It is

evident that the maximal difference occurs after %-(x) has peaked. There are

two reasons for this shift. Most influential is the term containing the pressure
gradient which is retained in our derivation. In addition, there is an “after-
effect" of the peak on the velocity distribution (enhanced by our four additional
terms) which becomes fully visible a small distance downstream. The influential
pressure gradient is about equal to zero at the maximum point for (CFA-CFV)/CFF
which explains the sudden drop of the curve somewhat in correspondence with %f(x).

Towards the tail of the body

becomes significant again and, indeed,

e L]

(CFA-CFV)/CFF % 0.
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Fig. 3. Semi-infinite body with longitudinal curvature (adapted from Huang et al. 1980).
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Fig. 5. Effects of thick laminar boundary layer development on the local friction
coefficient: A comparison between equations (5.1) and (5.2) at Re = 0(103).




In contrast to Fig. 5 where modeling improvements for points along the solid

u
3y [wall
layer velocity profiles as produced by (5.1) and (5.2). Again, the higher

surface are shown, i.e. (x), Figs. 6a-c depict the differences in boundary
accuracy of our equation is quite evident and has a significant effect on the
local fluid flow parameters, especially near and at the wall, as well as on the

point of separation. Figure 7 shows the development of the pressure gradient

as discussed earlier.

7. Conclusions and future work. Based on a mathematically rigorous

analysis, new sets of higher-order boundary layer equations for axisymmetric
laminar and turbulent flow fields were derived. For the.case-of thick laminar
boundary layer flow with longitudinal curvature effects, Van Dyke's momentum
equation was numerically compared with our new equation which carries four addi-
tional {second-order) terms. The difference between the two equations in terms
of local as well as integral properties of the flow system is significant. It
is anticipated that the existing discrepancy between predicted and measured

data for thick turbulent flows can now be closed with the use of the new

higher-order boundary layer equations. Hence, several case studies will be
conducted which will include the simulation of laminar and turbulent boundary
layer developments along longitudinally and transversely curved surfaces and
comparison with measured data sets published by So and Mellor (1973), Simpson
et al. (1974) and Huang et al. (1979, 1980).

The turbulent flow data collected by Simpson et al. (1974) include separation.
It is obvious that separating flows are very difficult to investigate. Strong
interactions between the potential flow and thick turbulent boundary layer

have to be accounted for. In addition, separation and near-wake effects might
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Fig. 6a: Comparison of laminar velocity profiles from (5.1) and (5.2) at
the nose of the submerqed body, i.e. before the peak of K*DEL
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influence the upstream region of the still attached boundary layer. However,
we will test the performance of our parabolic equations of region I also for
regions containing mild recirculation so that the complex simulation of (4.4

to 4.6) can be avoided whenever possible.

In any case, only simple submodels for the Reynolds stresses will be employe&

in order to demonstrate also for turbulent flow the physical significance of
our new equations. Previously, empirical turbulence models for specific case

studies were used in conjunction with incomplete momentum equations to match

laboratory observations.
To reduce the cumbersome and error-prone work of system discretization, the
mesh generator developed by Kleinstreuer (1980) and advancements proposed by

Dwyer et al. {1980) will be implemented for future case studies.
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NOMENCLATURE

i i A] to A9 parameters in equations(6.1 & 6.2)
i | f dimensionless stream function defined by Eq. (6.5)
| E h]E h=1+Kn metric coefficient (dimensionless)
! hy =1 metric coefficient (dimensionless) '
r E hy =r metric coefficient (dimensionless)
t K =-% longitudinal curvature (ft)']
L reference length (ft)
£ mixing length (ft)
M= ()T - (r) 11 (03T (Ft)
n coordinate, normal to body (ft)
P pressure )
; p non-dimensional pressure
; Q; to Qs parametersin equation (6.9c)
{ R radius of longitudinal curvature (ft)
| r=rgtn cosé transverse radius of curvature (ft)

Yo transverse radius of curvature of the body (ft)

s coordinate along the body surface (ft)

s non-dimensional coordinate along the body surface
t time

u s component of the velocity (ft/sec)

u dimensionless velocity in S direction

u time-averaged velocity in S direction (ft/sec)

u' velocity fluctuation in s direction (ft/sec)

u'2 Reynolds normal stress in S direction
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inf

Greek Symbols

dimensionless variable

free stream velocity

n component of the velocity (ft/sec)
dimensionless velocity in n direction
time-averaged velocity in g_directioﬁ (ft/sec)
velocity fluctuation in n direction (ft/sec)
Reynolds normal stress in n direction
non-dimensional variable

velocity normal to (s-n) plane (ft/sec)
Reynolds normal stress normal to (s-n) plane

Reynolds shear stress

longitudinal curvature effect parameter

angle between axis of symmetry and tangent to the
surface (radiant)

kinematic viscosity
eddy viscosity
dynamic viscosity (1bm/ft-sec)
mass density (1bm/ft3)

transformed s-coordinate (1bm/ft-sec)
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; n transformed n-coordinate (non-dimensional)

1

i 8 boundary-layer thickness (ft) .

|

| \Y . . . .

; € = 7} non-dimensional eddy viscosity

l

|

!

2 Superscripts

! !
' i transverse curvature index §

=1 does exist
=0 does not exist

j longitudinal curvature index |
=1 does exist ;
=0 does not exist

Subscripts i |
{ e outer edge of boundary layer g
| eff effective value |

f flat plate

t turbulent

W wall
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